Utah Core Standards Benchmarks Mathematics

		Number		
Test Name	Form	of Items	Standard	Description of the Standard
Benchmark Module:	Α	10		Create equations and inequalities in one variable and use
Mathematics				them to solve problems. Include equations arising from
Secondary Mathematics I			MI.A.CED.1	linear and simple exponential functions.
Algebra				Represent constraints by equations or inequalities and by
Algeola				systems of equations and/or inequalities, and interpret
				solutions as viable or non-viable options in a modeling
				context. For example, represent inequalities describing
				nutritional and cost constraints on combinations of
			MI.A.CED.3	different foods.
				Understand that the graph of an equation in two variables
				is the set of all its solutions plotted in the coordinate
			MI.A.REI.10	plane, often forming a curve (which could be a line).
				Graph the solutions to a linear inequality in two variables
				as a halfplane (excluding the boundary in the case of a
				strict inequality), and graph the solution set to a system of
				linear inequalities in two variables as the intersection of
			MI.A.REI.12	the corre sponding half-planes.
				Solve equations and inequalities in one variable.
				a. Solve one-variable equations and literal equations to
				highlight a variable of interest.
				b. Solve compound inequalities in one variable, including
				absolute value inequalities.
				c. Solve simple exponential equations that rely only on
				application of the laws of exponents (limit solving
				exponential equations to those that can be solved without
				logarithms).
			MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$.
				Solve systems of linear equations exactly and
				approximately (numerically, algebraically, graphically),
			MI.A.REI.6	focusing on pairs of linear equations in two variables.
	В	11		Create equations and inequalities in one variable and use
				them to solve problems. Include equations arising from
			MI.A.CED.1	linear and simple exponential functions.
				Create equations in two or more variables to represent
				relationships between quantities; graph equations on
			MI.A.CED.2	coordinate axes with labels and scales.

			Graph the solutions to a linear inequality in two variables
			as a halfplane (excluding the boundary in the case of a
			strict inequality), and graph the solution set to a system of
			linear inequalities in two variables as the intersection of
		MIADEL12	the corre sponding half-planes
		WII.A.NE1.12	Calus any stimulation and in any slitication and suppliers.
			Solve equations and inequalities in one variable.
			a. Solve one-variable equations and literal equations to
			highlight a variable of interest.
			b. Solve compound inequalities in one variable, including
			absolute value inequalities.
			c Solve simple exponential equations that rely only on
			application of the laws of exponents (limit colving
			application of the laws of exponents (limit solving
			exponential equations to those that can be solved without
			logarithms).
		MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$.
			Solve systems of linear equations exactly and
			approximately (numerically, algebraically, graphically),
		MI.A.REI.6	focusing on pairs of linear equations in two variables.
С	12		Create equations in two or more variables to represent
			relationships between quantities; graph equations on
		MI.A.CED.2	coordinate axes with labels and scales.
			Understand that the graph of an equation in two variables
			is the set of all its solutions plotted in the coordinate
			none after forming a sume (which could be a line)
		MI.A.KEI.IU	plane, often forming a curve (which could be a line).
			Graph the solutions to a linear inequality in two variables
			as a halfplane (excluding the boundary in the case of a
			strict inequality), and graph the solution set to a system of
			linear inequalities in two variables as the intersection of
		MI.A.REI.12	the corre sponding half-planes.
			Solve equations and inequalities in one variable.
			a. Solve one-variable equations and literal equations to
			highlight a variable of interest
			h Solve compound inequalities in one variable, including
			u. Solve compound mequalities in one variable, including
			absolute value inequalities.
			c. Solve simple exponential equations that rely only on
			application of the laws of exponents (limit solving
			exponential equations to those that can be solved without
	-		logarithms)
			logantinns).
		MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$.
		MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$.
		MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$. Solve systems of linear equations exactly and
		MI.A.REI.3	For example, $5^{x} = 125$ or $2^{x} = 1/16$. Solve systems of linear equations exactly and approximately (numerically, algebraically, graphically),

				Interpret linear expressions and exponential expressions
				with integer exponents that represent a quantity in terms
				of its context.
				a. Interpret parts of an expression, such as terms, factors,
			MI.A.SSE.1a	and coefficients.
Benchmark Module:	Α	10		Make formal geometric constructions with a variety of
Mathematics				tools and methods (compass and straightedge, string,
Secondry				reflective devices, paper folding, dynamic geometric
Mathematics I -				software, etc.). Emphasize the ability to formalize and
Geometry				defend how these constructions result in the desired
				objects. For example, copying a segment; copying an
				anale: bisectina a seament: bisectina an anale:
				constructing perpendicular lines, including the
				perpendicular bisector of a line seament: and constructing
				a line parallel to a aiven line through a point not on the
			MLG CO 12	line
				Represent transformations in the plane using, for example,
				transparencies and geometry software: describe
				transformations as functions that take points in the plane
				as inputs and give other points as outputs. Compare
				transformations that preserve distance and angle to those
			MLG.CO.2	that do not (e.g., translation versus horizontal stretch).
				Given a rectangle, parallelogram, trapezoid, or regular
				polygon, describe the rotations and reflections that carry it
			MI.G.CO.3	onto itself.
				Given a geometric figure and a rotation, reflection, or
				translation, draw the transformed figure using, for
				example, graph paper, tracing paper, or geometry
				software. Specify a sequence of transformations that will
				carry a given figure onto another. Point out the basis of
				rigid motions in geometric concepts, for example,
				translations move points a specified distance along a line
				parallel to a specified line; rotations move objects along a
				circular arc with a specified center through a specified
			MI.G.CO.5	angle.
				Use geometric descriptions of rigid motions to transform
				figures and to predict the effect of a given rigid motion on
				a given figure; given two figures, use
				the definition of congruence in terms of rigid motions to
			MI.G.CO.6	decide whether they are congruent.
				Use the definition of congruence in terms of rigid motions
				to show that two triangles are congruent if and only if
				corresponding pairs of sides and corresponding pairs of
			MI.G.CO.7	angles are congruent.

			Explain how the criteria for triangle congruence (ASA, SAS,
			and SSS) follow from the definition of congruence in terms
		MI.G.CO.8	of rigid motions.
			Prove the slope criteria for parallel and perpendicular
			lines; use them to solve geometric problems (e.g., find the
			equation of a line parallel or perpendicular to a given line
-	0	MI.G.GPE.5	that passes through a given point).
В	9		tools and methods (compass and straightedge, string
			reflective devices paper folding dynamic geometric
			software, etc.). Emphasize the ability to formalize and
			defend how these constructions result in the desired
			objects. For example, copying a segment; copying an
			angle; bisecting a segment; bisecting an angle;
			constructing perpendicular lines, including the
			perpendicular bisector of a line segment; and constructing
			a line parallel to a given line through a point not on the
		MI.G.CO.12	line.
			Represent transformations in the plane using, for example,
			transparencies and geometry software; describe
			transformations as functions that take points in the plane
			as inputs and give other points as outputs. Compare
			that do not (e.g. translation versus horizontal stretch)
		111.0.00.2	Given a geometric figure and a rotation reflection or
			translation, draw the transformed figure using, for
			example, graph paper, tracing paper, or geometry
			software. Specify a sequence of transformations that will
			carry a given figure onto another. Point out the basis of
			rigid motions in geometric concepts, for example,
			translations move points a specified distance along a line
			parallel to a specified line; rotations move objects along a
			circular arc with a specified center through a specified
		MI.G.CO.5	angle.
			Use the definition of congruence in terms of rigid motions
			to show that two triangles are congruent if and only if
			corresponding pairs of sides and corresponding pairs of
		MI.G.CO./	Explain how the criteria for triangle congruence (ASA SAS
			and SSS) follow from the definition of congruence in terms
		MI.G.CO.8	of rigid motions.
			Prove the slope criteria for parallel and perpendicular
			lines; use them to solve geometric problems (e.g., find the
			equation of a line parallel or perpendicular to a given line
		MI.G.GPE.5	that passes through a given point).

			Use coordinates to compute perimeters of polygons and
			areas of triangles and rectangles; connect with The
		MI.G.GPE.7	Pythagorean Theorem and the distance formula.
С	10		Make formal geometric constructions with a variety of
			tools and methods (compass and straightedge, string,
			reflective devices, paper folding, dynamic geometric
			software, etc.). Emphasize the ability to formalize and
			defend how these constructions result in the desired
			objects. For example, copying a seament; copying an
			anale; bisecting a segment; bisecting an angle;
			constructing perpendicular lines, including the
			perpendicular bisector of a line seament: and constructing
			a line narallel to a given line through a point not on the
		MLG.CO.12	line.
			Represent transformations in the plane using, for example,
			transparencies and geometry software; describe
			transformations as functions that take points in the plane
			as inputs and give other points as outputs. Compare
			transformations that preserve distance and angle to those
		MI.G.CO.2	that do not (e.g., translation versus horizontal stretch).
			Given a geometric figure and a rotation, reflection, or
			translation, draw the transformed figure using, for
			example, graph paper, tracing paper, or geometry
			software. Specify a sequence of transformations that will
			carry a given figure onto another. Point out the basis of
			rigid motions in geometric concepts, for example,
			translations move points a specified distance along a line
			parallel to a specified line; rotations move objects along a
			circular arc with a specified center through a specified
		MI.G.CO.5	angle.
			Use the definition of congruence in terms of rigid motions
			to show that two triangles are congruent if and only if
			corresponding pairs of sides and corresponding pairs of
		MI.G.CO.7	angles are congruent.
			Explain how the criteria for triangle congruence (ASA, SAS,
			and SSS) follow from the definition of congruence in terms
		MI.G.CO.8	of rigid motions.
			Prove the slope criteria for parallel and perpendicular
			lines; use them to solve geometric problems (e.g., find the
			equation of a line parallel or perpendicular to a given line
		MI.G.GPE.5	that passes through a given point).
			Use coordinates to compute perimeters of polygons and
			areas of triangles and rectangles; connect with The
		MI.G.GPE.7	Pythagorean Theorem and the distance formula.

Benchmark Module:	Α	23		Write a function that describes a relationship between two
Mathematics				quantities.
Secondary				a Determine an explicit expression, a recursive process, or
Mathematics I -			MIEDE1.	a. Determine an explicit expression, a recursive process, or
Number			MILF.BF.1a	
Quantity/Functions/St				Write arithmetic and geometric sequences both
atistics and				recursively and with an explicit formula, use them to
Probability				model situations, and translate between the two forms.
				Limit to linear and exponential functions. Connect
				arithmetic sequences to linear functions and geometric
			MI.F.BF.2	sequences to exponential functions.
				Understand that a function from one set (called the
				domain) to anotherset (called the range) assigns to each
				element of the domain exactly one element of the range If
				f is a function and y is an element of its domain, then $f(y)$
				f is a function and x is an element of its domain, then $f(x)$
				denotes the output of <i>f</i> corresponding to the input <i>x</i> . The
			MI.F.IF.1	graph of f is the graph of the equation $y = f(x)$.
				Use function notation, evaluate functions for inputs in
				their domains, and interpret statements that use function
			MI.F.IF.2	notation in terms of a context.
				Recognize that sequences are functions, sometimes
				defined recursively, whose domain is a subset of the
				integers. Emphasize arithmetic and geometric sequences
				as examples of linear and exponential functions. For
				example, the Fibonacci sequence is
				defined recursively by $f(0) = f(1) = 1$ $f(n+1) = f(n) + f(n-1)$
			MIFIF3	for $n > 1$
			WII.F .IF .J	Joi ii 2 1.
				For a function that models a relationship between two
				quantities, interpret key features of graphs and tables in
				quantities, interpret key reactives of graphs and tables in
				terms of the quantities, and sketch graphs showing key
				features given a verbal description of the relationship. <i>Key</i>
				features include intercepts; intervals where the function is
				increasing, decreasing, positive, or negative; relative
			MI.F.IF.4	maximums and minimums; symmetries; and end behavior.
				Calculate and interpret the average rate of change of a
				function (presented symbolically or as a table) over a
				specified interval. Estimate the rate of change from a
			MI.F.IF.6	graph.
				Graph functions expressed symbolically and show key
				features of the graph, by hand in simple cases and using
				technology for more complicated cases.
			MLF IF 79	a. Graph linear functions and show intercents
1		I	1711,1°,11',/A	ar stapit inical functions and show intercepts.

		Distinguish between situations that can be modeled with
		linear functions and with exponential functions.
		c. Recognize situations in which a quantity grows or decays
		by a constant percent rate per unit interval relative to
	MI.F.LE.1c	another.
		Construct linear and exponential functions, including
		arithmetic and geometric sequences, given a graph, a
		description of a relationship, or two input-output pairs
	MI.F.LE.2	(include reading these from a table).
		Use units as a way to understand problems and to guide
		the solution of multi-step problems; choose and interpret
		units consistently in formulas; choose and
		interpret the scale and the origin in graphs and data
	MI.N.Q.1	displays.
	_	Define appropriate quantities for the purpose of
	MI.N.Q.2	descriptive modeling.
		Interpret differences in shape, center, and spread in the
		context of the data sets, accounting for possible effects of
		extreme data points (outliers). Calculate the
		weighted average of a distribution and interpret it as a
	MI.S.ID.3	measure of center.
		Represent data on two quantitative variables on a scatter
		plot, and describe how the variables are related.
		c. Fit a linear function for scatter plots that suggest a linear
	MI.S.ID.6c	association.
		Interpret the slope (rate of change) and the intercept
		(constant term) of a linear model in the context of the
	MI.S.ID.7	data.
23		Write a function that describes a relationship between two
		quantities.
		a. Determine an explicit expression, a recursive process, or
	MI.F.BF.1a	steps for calculation from a context.
		Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$,
		for specific values of k (both positive and negative); find
		the value of k given the graphs. Relate the vertical
		translation of a linear function to its y-intercept.
		Experiment with cases and illustrate an explanation of the
	MI.F.BF.3	effects on the graph using technology.
		Use function notation, evaluate functions for inputs in
		their domains, and interpret statements that use function
	MI.F.IF.2	notation in terms of a context.

В

MI.F.IF.4 MI.F.IF.7a	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key</i> <i>features include intercepts; intervals where the function is</i> <i>increasing, decreasing, positive, or negative; relative</i> <i>maximums and minimums; symmetries; and end behavior.</i> Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear functions and show intercepts.
	Compare properties of two functions, each represented in
	a different way
	(algebraically, graphically, numerically in tables, or by
	verbal descriptions). For example,
	compare the growth of two linear functions, or two
	exponential functions such as y=3" and
MI.F.IF.9	$y=100 \cdot 2^{n}$.
MI.F.LE.1c	 bistinguish between situations that can be modeled with linear functions and with exponential functions. c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
	Construct linear and exponential functions, including
	arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs
MI.F.LE.2	(include reading these from a table).
	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data
MI.N.Q.1	displays.
MINGS	Choose a level of accuracy appropriate to limitations on
MI.N.Q.3	measurement when reporting quantities.
W11.5.1D.2	Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
MI.S.ID.3	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). Calculate the weighted average of a distribution and interpret it as a measure of center.

Benchmark Module:	Α	8	MII.F.IF.4	For a function that models a relationship between two
Mathematics				quantities, interpret key features of graphs and tables in
Secondary				terms of the quantities, and sketch graphs showing key
Mathematics II -				fortures given a verbal description of the relationship. Key
Functions				features given a verbal description of the relationship. Key
				features include intercepts; intervals where the function is
				increasing, decreasing, positive, or negative; relative
				maximums and minimums; symmetries; and end behavior
			MII.F.IF.7a	Graph functions expressed symbolically and show key
				features of the graph, by hand in simple cases and using
				technology for more complicated cases.
				a. Graph linear and guadratic functions and show
				intercepts, maxima, and minima
			MILF.IF.9	Compare properties of two functions each represented in
				a different way (algebraically, graphically, numerically in
				tables or by verbal descriptions). Extend work with
				auadratics to include the relationship between coefficients
				quadratics to include the relationship between coefficients
				and roots, and that once roots are known, a quadratic
				equation can be factored. For example, given a graph of
				one quadratic function and an algebraic expression for
				another, say which has the larger maximum.
			MII.F.LE.3	Observe using graphs and tables that a quantity increasing
				exponentially eventually exceeds a quantity increasing
				linearly, quadratically, or (more generally) as a polynomial
				function. Compare linear and exponential growth to
				quadratic growth.
			MII.F.TF.8	Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and
				use it to find sin (θ), cos (θ), or tan (θ), given sin (θ), cos
				(θ) , or tan (θ) , and the quadrant of the angle.
	В	8	MILF.IF.4	For a function that models a relationship between two
				quantities interpret key features of graphs and tables in
				terms of the quantities, and sketch graphs showing key
				fortures given a verbal description of the relationship. Key
				features given a verbal description of the relationship. Key
				include intercepts; intervals where the function is
				increasing, decreasing, positive, or negative; relative
				maximums and minimums; symmetries; and end behavior
			MII.F.IF.6	Calculate and interpret the average rate of change of a
				function (presented symbolically or as a table) over a
				specified interval. Estimate the rate of change from a
				graph.

			MII.F.IF.7a	 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
			MII.F.IF.8a	Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
				a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
			MII.F.TF.8	Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find sin (θ), cos (θ), or tan (θ), given sin (θ), cos (θ), or tan (θ), and the quadrant of the angle.
Benchmark Module: Mathematics Secondary Mathematics II	A	11	MII.G.C.3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Geometry			MII.G.C.4	Construct a tangent line from a point outside a given circle to the circle.
			MII.G.CO.10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
			MII.G.CO.11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
			MII.G.CO.9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

		MII.G.GMD.1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Informal arguments for area formulas can make use of the way in which area scale under similarity transformations: when one figure in the plane results from another by applying a similarity transformation with scale factor k, its area is k ² times the area of the first. <i>Use dissection arguments, Cavalieri's principle, and informal limit arguments.</i>
		MII.G.SRT.1b	Verify experimentally the properties of dilations given by a center and a scale factor.b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
		MII.G.SRT.5	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
В	12	MII.G.C.4	Construct a tangent line from a point outside a given circle to the circle.
		MII.G.C.5	Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
		MII.G.CO.10	Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
		MII.G.CO.11	Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
		MII.G.CO.9	Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

			MII.G.GMD.3 MII.G.SRT.5	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. Informal arguments for volume formulas can make use of the way in which volume scale under similarity transformations: when one figure results from another by applying a similarity transformation, volumes of solid figures scale by k^3 under a similarity transformation with scale factor k Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
			MII.G.SRT.8	Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
Benchmark Module: Mathematics Secondary Mathematics II - Number &	A	19	MII.A.APR.1	Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Quantity/Aigeora			MII.A.CED.1	Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
			MII.A.CED.2	Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
			MII.A.REI.4a	Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.
			MII.A.REI.4b	Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b .
			MII.A.SSE.1a	Interpret quadratic and exponential expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
			MII.A.SSE.2	Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.

1		1		
			MII.N.CN.1	Know there is a complex number i such that $i^2 = -1$, and
				every complex number has the form $a + bi$ with a and b
				real.
			MII.N.CN.7	Solve quadratic equations with real coefficients that have
				complex solutions.
			MII.N.CN.8	Extend polynomial identities to the complex numbers.
				Limit to guadratics with real coefficients. For example.
				rewrite $x^2 + 4$ as $(x + 2i)(x - 2i)$
			MILN CN 9	Know the Fundamental Theorem of Algebra: show that it is
				true for quadratic polynomials
			MILN RN 2	Powrite expressions involving radicals and rational
			14111,11,111,111,12	exponents using the properties of exponents
		20	MILA ADD 1	Linderstand that nelynemials form a system analogous to
	Р	20	WIII,A,AI K,I	the intersection that polynomials form a system analogous to
				the integers, namely, they are closed under the operations
				of addition, subtraction, and multiplication; add, subtract,
				and multiply polynomials.
			MILA CED 1	
			MII.A.CED.I	Create equations and inequalities in one variable and use
				them to solve problems. Include equations arising from
				linear and quadratic functions, and simple rational and
				exponential functions.
			MII.A.CED.2	Create equations in two or more variables to represent
				relationships between quantities; graph equations on
				coordinate axes with labels and scales.
			MII.A.REI.4b	Solve quadratic equations in one variable.
				b. Solve quadratic equations by inspection (e.g., for x^2 =
				49), taking square roots, completing the square, the
				quadratic formula and factoring, as appropriate to the
				initial form of the equation. Recognize when the quadratic
				formula gives complex solutions and write them as $a \pm bi$
				for real numbers a and b.
			MII.A.SSE.2	Use the structure of an expression to identify ways to
				rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus
				recognizing it as a difference of squares that can
				be factored as $(x^2 - y^2)(x^2 + y^2)$.
			MII.N.CN.1	Know there is a complex number i such that $i^2 = -1$, and
				every complex number has the form $a + bi$ with a and b
				real
			MILN.CN.7	Solve quadratic equations with real coefficients that have
				complex solutions
			MILN.CN.8	Extend polynomial identities to the complex numbers
				Limit to quadratics with real coefficients. For example
				rowsite $y^2 + 4$ as $(y + 2)/(y - 2)$
				rewrite $x + 4$ as $(x + 2I)(x - 2I)$.
			WIII.IN.CIN.9	Know the Fundamental Theorem of Algebra; show that it is
				true for quadratic polynomials.

			MII.N.RN.2	Rewrite expressions involving radicals and rational
				exponents using the properties of exponents.
			MII.N.RN.3	Explain why sums and products of rational numbers are
				rational, that the sum of a rational number and an
				irrational number is irrational, and that the product
				of a nonzero rational number and an irrational number is
				irrational. Connect to physical situations (e.g., finding the
				perimeter of a square of area 2).
Benchmark Module: Mathematics Secondary	Α	12	MIII.F.BF.1b	Write a function that describes a relationship between two quantities.
Mathematics III -				b. Combine standard function types using arithmetic
Functions				operations. For example, build a junction that models the
				function to a decaying exponential and relate these
				function to the model
			MIII F RF 4a	Find inverse functions
				a Solve an equation of the form $f(x) = c$ for a simple
				function f that has an inverse and write an expression for
				the inverse. Include linear, guadratic, exponential
				logarithmic, rational, square root, and cube root functions.
				For example $f(x) = 2x^3$ or $f(x) = (x+1)/(x-1)$ for $x \neq 1$
			MIII.F.IF.4	For a function that models a relationship between two
				quantities, interpret key features of graphs and tables in
				terms of the quantities, and sketch graphs showing key
				features given a verbal description of the relationship. Key
				features include intercepts; intervals where the function is
				increasing, decreasing, positive, or negative; relative
				maximums and minimums; symmetries; end behavior; and
				periodicity.
			MIII.F.IF.5	Relate the domain of a function to its graph and, where
				applicable, to the quantitative relationship it describes.
				For example, if the function h(n) gives the number of
				person-hours it takes to assemble n engines in a factory,
				then the positive integers would be an appropriate domain
				for the function.
			MIII.F.IF.7b	Graph functions expressed symbolically and show key
				features of the graph, by hand in simple cases and using
				technology for more complicated cases.
				b. Graph square root, cube root, and piecewise-defined
				functions, including step functions and absolute value
				functions. Compare and contrast square root, cubed root,
				and step functions with all other functions.

		MIII.F.IF.7c	Graph functions expressed symbolically and show key
			features of the graph, by hand in simple cases and using
			technology for more complicated cases.
			c. Graph polynomial functions, identifying zeros when
			suitable factorizations are available, and showing end
			behavior.
		MIII.F.IF.7e	Graph functions expressed symbolically and show key
			features of the graph, by hand in simple cases and using
			technology for more complicated cases.
			e. Graph exponential and logarithmic functions, showing
			intercepts and end behavior; and trigonometric functions,
			showing period, midline, and amplitude.
			For every entitle models, every see a large it has the
		WIIII,F,LE,4	For exponential models, express as a logarithm the
			solution to $ab^{-1} = d$ where $a, c, and d$ are numbers and
			the base b is 2, 10, or e; evaluate the logarithm using
			technology. Include the relationship between properties of
			logarithms and properties of exponents, such as the
			connection between the properties of exponents and the
			basic logarithm property that log $xy = log x + log y$.
В	11	MIII.F.BF.1b	Write a function that describes a relationship between two
			quantities.
			b. Combine standard function types using arithmetic
			operations. For example, build a function that models the
			temperature of a cooling body by adding a constant
			function to a decaying exponential, and relate these
			functions to the model.
		MIII.F.IF.4	For a function that models a relationship between two
			quantities, interpret key features of graphs and tables in
			terms of the quantities, and sketch graphs showing key
			features given a verbal description of the relationship. Key
			features include intercepts; intervals where the function is
			increasing, decreasing, positive, or negative; relative
			maximums and minimums; symmetries; end behavior; and
			periodicity.
		MIII E IE 5	
		IVIIII.F.IF.3	Relate the domain of a function to its graph and, where
			applicable, to the quantitative relationship it describes.
		-	
			For example, if the function n(n) gives the number of
			person-hours it takes to assemble n engines in a factory,
			For example, if the function h(n) gives the number of person-hours it takes to assemble h engines in a factory, then the positive integers would be an appropriate domain

	MIII.F.IF.7b	 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. Compare and contrast square root, cubed root, and step functions with all other functions.
	MIII.F.IF.7c	 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
	MIII.F.IF.7e	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. e. Graph exponential and logarithmic functions, showing intercepts and end behavior; and trigonometric functions, showing period, midline, and amplitude.
	MIII.F.LE.4	For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where $a, c, and d$ are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. Include the relationship between properties of logarithms and properties of exponents, such as the connection between the properties of exponents and the basic logarithm property that log $xy = log x + log y$.
11	MIII.F.BF.1b	 Write a function that describes a relationship between two quantities. b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
	MIII.F.IF.4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key</i> <i>features include intercepts; intervals where the function is</i> <i>increasing, decreasing, positive, or negative; relative</i> <i>maximums and minimums; symmetries; end behavior; and</i> <i>periodicity.</i>

С

			MIII.F.IF.5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
			MIII.F.IF.7b	 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. Compare and contrast square root, cubed root, and step functions with all other functions.
			MIII.F.IF.7e	 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. e. Graph exponential and logarithmic functions, showing intercepts and end behavior; and trigonometric functions, showing period, midline, and amplitude.
			MIII.F.LE.4	For exponential models, express as a logarithm the solution to $ab^{ct} = d$ where a , c , and d are numbers and the base b is 2, 10, or e ; evaluate the logarithm using technology. Include the relationship between properties of logarithms and properties of exponents, such as the connection between the properties of exponents and the basic logarithm property that log $xy = log x + log y$.
Benchmark Module: Mathematics Secondary Mathematics III - Number & Ouantity/Algebra	A	14	MIII.A.APR.1	Understand that all polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
(MIII.A.APR.4	Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x^2 + y^2)^2 = (x^2 - y^2)^2 + (2xy)^2$ can be used to generate Pythagorean triples.
			MIII.A.APR.5	Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in powers of x and y for a positive integer n, where x and y are any numbers. For example, with coefficients determined by Pascal's Triangle.

I		MIII.A.APR.6	Rewrite simple rational expressions in different forms;
			write $a(x)/b(x)$ in the form $q(x) + r(x)/b(x)$, where $a(x)$,
			b(x), $q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$
			less than the degree of $b(x)$, using inspection, long division
			or for the more complicated examples a computer
			algebra system
		MIII A APR 7	Understand that rational expressions form a system
			analogous to the rational numbers, closed under addition
			allalogous to the rational humbers, closed under addition,
			subtraction, multiplication, and division by a nonzero
			rational expression; add, subtract, multiply, and divide
			rational expressions.
		MIII.A.CED.2	Create equations in two or more variables to represent
			relationships between quantities; graph equations on
			coordinate axes with labels and scales.
		MIII.A.REI.2	Solve simple rational and radical equations in one variable,
			and give examples showing how extraneous solutions may
			arise.
		MIII.A.SSE.1a	Interpret polynomial and rational expressions that
			represent a quantity in terms of its context.
			a. Interpret parts of an expression, such as terms, factors,
			and coefficients.
		MIII.A.SSE.2	Use the structure of an expression to identify ways to
			rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus
			recognizing it as a difference of squares that can be
			factored as $(x^{2} - y^{2})(x^{2} + y^{2})$.
		MIII.N.CN.8	Extend polynomial identities to the complex numbers. For
			example requiring $x^2 + 4$
			example, rewrite x + 4
			ds(x+2)(x-2)
	14	MIII.A.APK.I	Understand that all polynomials form a system analogous
			to the integers, namely, they are closed under the
			operations of addition, subtraction, and multiplication;
			add, subtract, and multiply polynomials.
		MIII.A.APR.4	Prove polynomial identities and use them to describe
			numerical relationships. For example, the polynomial
			identity $(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + (2xy)^{2}$ can be used to
			generate Pythagorean triples.
ļ		MIII.A.APR.5	Know and apply the Binomial Theorem for the expansion
ļ			of $(x + y)^n$ in powers of x and y for a positive integer n.
ļ			where x and y are any numbers. For example, with
ļ			coefficients determined by Pascal's Trianale.
			,,
1			

В

		MIII.A.APR.7	Understand that rational expressions form a system
			analogous to the rational numbers, closed under addition,
			subtraction, multiplication, and division by a nonzero
			rational expression; add, subtract, multiply, and divide
			rational expressions.
		MIII.A.CED.4	Rearrange formulas to highlight a quantity of interest,
			using the same reasoning as in solving equations. For
			example, rearrange the compound interest formula to
			solve for t: A = P(1+ r/n) ^{nt}
		MIII.A.REI.2	Solve simple rational and radical equations in one variable,
			and give examples showing how extraneous solutions may
			arise.
		MIII.A.SSE.1a	Interpret polynomial and rational expressions that
			represent a quantity in terms of its context.
			a. Interpret parts of an expression, such as terms, factors,
			and coefficients.
		MIII.A.SSE.2	Use the structure of an expression to identify ways to
			rewrite it. For example, see $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus
			recognizing it as a difference of squares that can be
			factored as $(x^2 - y^2)(x^2 + y^2)$.
		MIII.N.CN.8	Extend polynomial identities to the complex numbers. For
			example rewrite $x^2 + 4$ as
			(x + 2i)(x - 2i).
		MIII.N.CN.9	Know the Fundamental Theorem of Algebra; show that it is
			true for quadraticpolynomials. Limit to polynomials with
			real coefficients.
С	14	MIII.A.APR.1	Understand that all polynomials form a system analogous
			to the integers, namely, they are closed under the
			operations of addition, subtraction, and multiplication;
			add, subtract, and multiply polynomials.
		MIII.A.APR.5	Know and apply the Binomial Theorem for the expansion
			of $(x + y)^n$ in powers of x and y for a positive integer n,
			where x and y are any numbers. For example, with
			coefficients determined by Pascal's Triangle.
		MIII.A.APR.7	Understand that rational expressions form a system
			analogous to the rational numbers, closed under addition,
			subtraction, multiplication, and division by a nonzero
			rational expression; add, subtract, multiply, and divide
			rational expressions.
		MIII.A.CED.4	Rearrange formulas to highlight a quantity of interest,
	1		using the same reasoning as in solving equations. For
			using the same reasoning as in solving equations. To
			example, rearrange the compound interest formula to

			MIII.A.REI.2	Solve simple rational and radical equations in one variable,
				and give examples showing how extraneous solutions may
				arise.
			MIII.A.SSE.1a	Interpret polynomial and rational expressions that
				represent a quantity in terms of its context.
				a. Interpret parts of an expression, such as terms, factors,
				and coefficients.
			MIII.A.SSE.2	Use the structure of an expression to identify ways to
				rewrite it. For example, see $x^4 - y^4 as (x^2)^2 - (y^2)^2$, thus
				recognizing it as a difference of squares that can be
				factored as $(x^{2} - y^{2})(x^{2} + y^{2})$.
			MIII.N.CN.8	Extend polynomial identities to the complex numbers. For
				example rewrite $x^2 + 4$ as
				(x + 2i)(x - 2i)
Benchmark Module:	Δ	10	MIII.F.TF.2	Explain how the unit circle in the coordinate plane enables
Mathematics				the extension of trigonometric functions to all real
Secondary				numbers, interpreted as radian measures of angles
Mathematics III -				traversed counterclockwise around the unit circle.
Trigonomic				
runctions/Geometry			MIII.F.TF.3	Use special triangles to determine geometrically the values
				of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi6$, and use the
				unit circle to express the values of sine, cosine, and
				tangent for $\pi - x$, $\pi + x$, and $2\pi - x$ in terms of their values
				for x , where x is any real number.
			MIII.F.TF.5	Choose trigonometric functions to model periodic
				phenomena with specified amplitude, frequency, and
				midline.
			MIII.G.GMD.4	Identify the shapes of two-dimensional cross-sections of
				three-dimensional objects, and identify three-dimensional
				objects generated by rotations of two-dimensional objects.
			MIII.G.MG.1	Use geometric shapes, their measures, and their
				properties to describe objects (e.g., modeling a tree trunk
				or a human torso as a cylinder).
			MIII.G.MG.2	Apply concepts of density based on area and volume in
				modeling situations (e.g., persons per square mile, BTUs
				per cubic foot).
	В	11	MIII.F.TF.2	Explain how the unit circle in the coordinate plane enables
				the extension of trigonometric functions to all real
				numbers, interpreted as radian measures of angles
				traversed counterclockwise around the unit circle.

			MIII.F.TF.3	Use special triangles to determine geometrically the values of sine, cosine, tangent for $\pi/3$, $\pi/4$ and $\pi6$, and use the unit circle to express the values of sine, cosine, and tangent for $\pi - x$, $\pi + x$, and $2\pi - x$ in terms of their values for x, where x is any real number.
			MIII.F.TF.5	Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.
			MIII.G.GMD.4	Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.
			MIII.G.MG.2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
			MIII.G.MG.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).
Benchmark Module: Mathematics Secondary Mathematics III	A	8	MIII.S.IC.1	Understand that statistics allow inferences to be made about populationparameters based on a random sample from that population.
Statistics & Probability			MIII.S.IC.4	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
			MIII.S.ID.4	Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.